Torpor and hypothermia: reversed hysteresis of metabolic rate and body temperature.
نویسندگان
چکیده
Regulated torpor and unregulated hypothermia are both characterized by substantially reduced body temperature (Tb) and metabolic rate (MR), but they differ physiologically. Although the remarkable, medically interesting adaptations accompanying torpor (e.g., tolerance for cold and ischemia, absence of reperfusion injury, and disuse atrophy) often do not apply to hypothermia in homeothermic species such as humans, the terms "torpor" and "hypothermia" are often used interchangeably in the literature. To determine how these states differ functionally and to provide a reliable diagnostic tool for differentiating between these two physiologically distinct states, we examined the interrelations between Tb and MR in a mammal (Sminthopsis macroura) undergoing a bout of torpor with those of the hypothermic response of a similar-sized juvenile rat (Rattus norvegicus). Our data show that under similar thermal conditions, 1) cooling rates differ substantially (approximately fivefold) between the two states; 2) minimum MR is approximately sevenfold higher during hypothermia than during torpor despite a similar Tb; 3) rapid, endogenously fuelled rewarming occurs in torpor but not hypothermia; and 4) the hysteresis between Tb and MR during warming and cooling proceeds in opposite directions in torpor and hypothermia. We thus demonstrate clear diagnostic physiological differences between these two states that can be used experimentally to confirm whether torpor or hypothermia has occurred. Furthermore, the data can clarify the results of studies investigating the ability of physiological or pharmacological agents to induce torpor. Consequently, we recommend using the terms "torpor" and "hypothermia" in ways that are consistent with the underlying regulatory differences between these two physiological states.
منابع مشابه
Central adenosine receptor signaling is necessary for daily torpor in mice.
When calorically restricted at cool ambient temperatures, mice conserve energy by entering torpor, during which metabolic rate (MR), body temperature (T(b)), heart rate (HR), and locomotor activity (LMA) decrease. Treatment with exogenous adenosine produces a similar hypometabolic state. In this study, we conducted a series of experiments using the nonspecific adenosine receptor antagonists ami...
متن کاملAMP does not induce torpor.
Torpor, a state characterized by a well-orchestrated reduction of metabolic rate and body temperature (T(b)), is employed for energetic savings by organisms throughout the animal kingdom. The nucleotide AMP has recently been purported to be a primary regulator of torpor in mice, as circulating AMP is elevated in the fasted state, and administration of AMP causes severe hypothermia. However, we ...
متن کاملStrategies for therapeutic hypometabothermia.
Although therapeutic hypothermia and metabolic suppression have shown robust neuroprotection in experimental brain ischemia, systemic complications have limited their use in treating acute stroke patients. The core temperature and basic metabolic rate are tightly regulated and maintained in a very stable level in mammals. Simply lowering body temperature or metabolic rate is actually a brutal t...
متن کاملMetabolic suppression in mammalian hibernation: the role of mitochondria.
Hibernation evolved in some small mammals that live in cold environments, presumably to conserve energy when food supplies are low. Throughout the winter, hibernators cycle spontaneously between torpor, with low metabolism and near-freezing body temperatures, and euthermia, with high metabolism and body temperatures near 37°C. Understanding the mechanisms underlying this natural model of extrem...
متن کاملPyruvate induces torpor in obese mice.
Mice subjected to cold or caloric deprivation can reduce body temperature and metabolic rate and enter a state of torpor. Here we show that administration of pyruvate, an energy-rich metabolic intermediate, can induce torpor in mice with diet-induced or genetic obesity. This is associated with marked hypothermia, decreased activity, and decreased metabolic rate. The drop in body temperature cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 307 11 شماره
صفحات -
تاریخ انتشار 2014